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Abstract. A fast and accurate method for pricing early exercise and certain exotic options
in computational finance is presented. The method is based on a quadrature technique and relies
heavily on Fourier transformations. The main idea is to reformulate the well-known risk-neutral
valuation formula by recognizing that it is a convolution. The resulting convolution is dealt with
numerically by using the fast Fourier transform. This novel pricing method, which we dub the
convolution method, is applicable to a wide variety of payoffs and requires only the knowledge of the
characteristic function of the model. As such, the method is applicable within many regular affine
models, among which is the class of exponential Lévy models. For an M -times exercisable Bermudan
option, the overall complexity is O(MN log2(N)), with N grid points used to discretize the price of
the underlying asset. American options are priced efficiently by applying Richardson extrapolation
to the prices of Bermudan options.
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1. Introduction. When valuing and risk-managing exotic derivatives, practi-
tioners demand fast and accurate prices and sensitivities. As the financial models and
option contracts used in practice are becoming increasingly complex, efficient meth-
ods have to be developed to cope with such models. Aside from nonstandard exotic
derivatives, plain vanilla options in many stock markets are actually of the Ameri-
can type. As any pricing and risk-management system has to be able to calibrate to
these plain vanilla options, it is important to be able to value these American options
quickly and accurately.

By means of the risk-neutral valuation formula, the price of any option without
early-exercise features can be written as an expectation of the discounted payoff of
this option. By starting from this representation one can apply several numerical
techniques to calculate the price itself: Monte Carlo simulation, numerical solution of
the corresponding partial (integro)differential equation (P(I)DE) and numerical inte-
gration. While the treatment of early-exercise features within the first two techniques
is relatively standard, the pricing of such contracts via quadrature pricing techniques
has not been considered until recently; see [2, 40]. Each of these methods has its
merits and demerits, though for the pricing of American options the PIDE approach
currently seems to be the clear favorite [22, 43].
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In the past couple of years a vast body of literature has considered the modeling
of asset returns as infinite activity Lévy processes, due to the ability of such processes
to adequately describe the empirical features of asset returns and at the same time
provide a reasonable fit to the implied volatility surfaces observed in option markets.
Valuing American options in such models is, however, far from trivial, due to the
weakly singular kernels of the integral terms appearing in the PIDE, as reported in,
e.g., [4, 5, 12, 23, 36, 42].

In this paper we present a quadrature-based method for pricing options with early-
exercise features. The method combines the recent quadrature pricing methods of [2,
40] with the methods based on Fourier transformation pioneered by [9, 37, 32]. Though
the transform methods so far have been used mainly for the pricing of European op-
tions, we show how early-exercise features can be incorporated naturally. The require-
ments of the method are that the increments of the driving processes are independent
of each other and that the conditional characteristic function of the underlying asset
is known. This is certainly the case for many exponential Lévy models and models
from the broader class of regular affine processes of [15], which also encompasses the
exponentially affine jump-diffusion class of [14]. In contrast to the PIDE methods,
processes of infinite activity, such as the variance gamma (VG) or CGMY (named
after Carr, Geman, Madan, and Yor) models, can be handled with relative ease.

The present paper is organized as follows. We start with an overview of the recent
history of transform and quadrature methods in option pricing. Subsequently we
introduce the novel method called the convolution (CONV) method for early-exercise
options. Its high accuracy and speed are demonstrated by pricing several Bermudan
and American options under geometric Brownian motion (GBM), VG, CGMY, and
Kou’s model.

2. Overview of transform and quadrature methods. All transform meth-
ods start from the risk-neutral valuation formula that, for a European option, reads:

(1) V (t, S(t)) = e−rτ
E [V (T, S(T ))] ,

where V denotes the value of the option, r is the risk-neutral interest rate, t is the
current time point, T is the maturity of the option, and τ = T − t. The variable S
denotes the asset on which the option contract is based. The expectation is taken
with respect to the risk-neutral probability measure. As (1) is an expectation, it can
be calculated via numerical integration provided that the probability density is known
in closed form.

This is not the case for many models which do, however, have a characteristic
function in closed form.1 A number of papers starting from Heston [21] have solved
the problem differently. Focusing on a plain vanilla European call option, note that (1)
can be written very generally as:

(2) V (t, S(t)) = e−rτ (F (t, T ) · S(S(T ) > K) −K · P(S(T ) > K)),

where F (t, T ) is the forward price of the underlying asset at time T , as seen from t,
and P and S indicate, respectively, the risk-neutral probability measure and the stock
price measure, induced by taking the asset price itself as the numeraire asset. Note
that (2) has the same form as the celebrated Black–Scholes formula. As such, both of
the cumulative probabilities can be found by inverting the characteristic function, an

1Or the probability density involves complicated special functions, whereas the characteristic
function is comparatively easier.
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approach which in the form used here dates back to Gurland [19] and Gil-Pelaez [18].
We can write:

P(S(T ) > K)=
1

2
+

1

π

∫ ∞

0

Re
e−iukφ(u)

iu
du,(3)

S(S(T ) > K)=
1

2
+

1

π

∫ ∞

0

Re
e−iukφ(u− i)

iuφ(−i)
du,(4)

where i is the imaginary unit, k is the logarithm of the strike price K, Re denotes
taking the real part of the integral, and φ is the characteristic function of the log-
underlying, i.e.,

φ(u) = E

[
eiu lnS(T )

]
.

Carr and Madan [9] considered another approach. Note that L1-integrability is a
sufficient condition for the Fourier transform of a function to exist. A call option is
not L1-integrable with respect to the logarithm of the strike price, as:

lim
k→−∞

V (t, S(t)) = S(t).

Damping the option price with exp (αk) for α > 0 solves this, however, and Carr and
Madan proposed the following solution:

F{eαkV (t, k)} = e−rτ

∫ ∞

0

Re eiukeαkE
[
(S(T ) − ek)+

]
dk

=
e−rτφ(u− (α + 1)i)

−(u− αi)(u− (α + 1)i)
,(5)

where we now consider the option price V as a function of time and k. Though this
approach was new to mathematical finance, the idea of damping functions on the
positive real line in order to be able to find their Fourier transform dates back to
Dubner and Abate [13].

A necessary and sufficient condition for (5) to exist is that

|φ(u− (α + 1)i)| ≤ φ(−(α + 1)i) = E[S(T )α+1] < ∞,

i.e., that the (α + 1)th moment of the asset price exists. The option price can be
recovered by inverting (5) and undamping

(6) V (t, k) =
1

2π
e−rτ−αk

∫ ∞

0

Re e−iuk φ(u− (α + 1)i)

−(u− αi)(u− (α + 1)i)
du.

The representation in (6) has two distinct advantages over (2). First, it requires only
one numerical integration. Second, whereas (2) can suffer from cancellation errors,
the numerical stability of (6) can be controlled by means of the damping coefficient α;
see [30, 33]. Finally we note that, if we discretize (6) with Newton–Cotes quadrature,
the option price can very efficiently be evaluated by means of the FFT, yielding option
prices over a whole range of strike prices.

The methods discussed until here can handle only the pricing of European options.
Before turning to methods that can handle early-exercise features, let us introduce
some notation. We define the set of exercise dates as T = {t1, . . . , tM} and 0 = t0 ≤ t1.
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For ease of exposure we assume the exercise dates are equally spaced, so that tm+1 −
tm = Δt. The best-known examples of options with early-exercise features are Amer-
ican and Bermudan options. American options can be exercised at any time prior to
the option’s expiry, whereas Bermudan options can be exercised only at certain dates
in the future. If the option is exercised at some time t ∈ T , the holder of the option
obtains the exercise payoff E(t, S(t)). The Bermudan option price can then be found
via backward induction as⎧⎪⎪⎨⎪⎪⎩

V (tM , S(tM )) = E(tM , S(tM )),
C(tm, S(tm)) = e−rΔt

Etm [V (tm+1, S(tm+1))] ,
V (tm, S(tm)) = max{C(tm, S(tm)), E(tm, S(tm))},
V (t0, S(t0)) = C(t0, S(t0)),

m = M − 1, . . . , 1,(7)

with C the continuation value of the option and V the value of the option immediately
prior to the exercise opportunity. Note that we now have attached a subscript to the
expectation operator to indicate that the expectation is being taken with respect to
all information available at time tm.

The dynamic programming problem in (7) is a successive application of the risk-
neutral valuation formula, as we can write the continuation value as

C(tm, S(tm)) = e−rΔt

∫ ∞

−∞
V (tm+1, y)f(y|S(tm))dy,(8)

where f(y|S(tm)) represents the probability density describing the transition from
S(tm) at tm to y at tm+1. Based on (7) and (8), the quadrature (QUAD) method
was introduced in [2]. The method requires the transition density to be known in
closed form, which is the case in, e.g., the Black–Scholes model and Merton’s jump-
diffusion model. This requirement is relaxed in [40], where the QUAD-FFT method
is introduced. The underlying idea is that the transition density can be recovered
by inverting the characteristic function, so that the QUAD method can be used for
a wider range of models. As such, the QUAD-FFT method, also applied in [11],
effectively combines the QUAD method with the early transform methods. The overall
complexity of both methods is O(MN2) for an M -times exercisable Bermudan option,
with N grid points used to discretize the price of the underlying asset.

The complexity of this method can be improved to O(MN log2(N)) if the under-
lying is a monotone function of a Lévy process. We will demonstrate this shortly. In
the remainder we assume, as is common, that the underlying process is modeled as
an exponential of a Lévy process. Let x1, . . . , xN be a uniform grid for the log-asset
price. If we discretize (8) by the trapezoidal rule, we can write the continuation value
in matrix form as

(9) C(tm) ≈ e−rΔtΔx

[
FV − 1

2
(V (tm+1, x1) f1 + V (tm+1, xN ) fN )

]
,

where

fi =

⎛⎜⎝ f(xi|x1)
...

f(xi|xN )

⎞⎟⎠ , F = (f1, . . . , fN ), V =

⎛⎜⎝ V (tm+1, x1)
...

V (tm+1, xN )

⎞⎟⎠ ,

and f(y|x) now denotes the transition density in logarithmic coordinates. The key
observation is that the increments of Lévy processes are independent, so that due to
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the uniform grid

(10) Fj,� = f(yj |y�) = f(yj+1|y�+1) = Fj+1,�+1.

The matrix F is hence a Toeplitz matrix. A Toeplitz matrix can easily be repre-
sented as a circulant matrix, which has the property that the FFT algorithm can be
employed to efficiently calculate matrix-vector multiplications. Therefore, an overall
computational complexity of O(MN log2(N)) can be achieved. Though this method
is significantly faster than [2] or [40], we do not pursue it in this paper, as the method
we develop in the next section has the same complexity yet requires fewer operations.

The previous literature does not seem to have picked up on a presentation by
Reiner [38], where it was recognized that for the Black–Scholes model the risk-neutral
valuation formula in (8) can be seen as a convolution or correlation of the continuation
value with the transition density. As convolutions can be handled very efficiently by
means of the FFT, an overall complexity of O(MN log2 N) can be achieved. By
working forward instead of backward in time, a number of discrete path-dependent
options can also be treated, such as lookbacks, barriers, Asian options, and cliquets.
Building on Reiner’s idea, Broadie and Yamamoto [7] reduced the complexity to
O(MN) for the Black–Scholes model by combining the double-exponential integration
formula and the fast Gauss transform. Their technique is applicable to any model in
which the transition density can be written as a weighted sum of Gaussian densities,
which is the case in, e.g., Merton’s jump-diffusion model.

As one of the defining properties of a Lévy process is that its increments are
independent of each other, the insight of Reiner has a much wider applicability than
only to the Black–Scholes model. This is especially appealing since the usage of Lévy
processes in finance has become more established nowadays. By combining Reiner’s
ideas with the work of Carr and Madan, we introduce the CONV method. The
complexity of the method is O(MN log2 N) for an M -times exercisable Bermudan
option.

Our method has similarities with both the quadrature pricing and the PIDE
methods. Though the complexity of our method is smaller than that of the QUAD
variants, we share the construct that time steps are required only on the exercise dates
of the product. However, our application of the FFT to approximate convolution
integrals bears more resemblance to the approximation of the integral term in the
numerical solution of a PIDE. Here Andersen and Andreasen [1] were the first to
suggest that for jump-diffusion models the integral term in the PIDE can be calculated
efficiently via use of the FFT, rendering the complexity O(MN log2 N) instead of
O(MN2). Since then, similar ideas have been applied to various jump-diffusion and
infinite activity Lévy models [20, 4, 5, 42]. We will compare our method in terms
of accuracy and speed to two PIDE methods in Appendix C. Alternative methods
for valuing options in Lévy models are the lattice-based approach of Këllezi and
Webber [28], which is O(MN2), and the multinomial tree of Maller, Solomon, and
Szimayer [35], which is O(M2).

3. The CONV method. The main premise of the CONV method is that the
conditional probability density f(y|x) in (8) depends on x and y only via their differ-
ence

(11) f(y|x) = f(y − x).

Note that x and y do not have to represent the asset price directly; they could be
monotone functions of the asset price. The assumption made in (11) therefore cer-



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONV METHOD FOR OPTION PRICING 1683

tainly holds when the asset price is modeled as a monotone function of a Lévy process,
since one of the defining properties of a Lévy process is that its increments are in-
dependent of each other. As mentioned earlier, we choose to work with exponential
Lévy models in the remainder of this paper. In this case x and y in (11) represent
the log-spot price. By including (11) in (8) and changing variables z = y − x, the
continuation value can be expressed as

C(tm, x) = e−rΔt

∫ ∞

−∞
V (tm+1, x + z)f(z)dz,(12)

which is a cross correlation2 of the option value at time tm+1 and the density f(z)
or, equivalently, a convolution of V (tm+1) and the conjugate of f(z). If the density
function has a closed-form expression, it may be beneficial to proceed along the lines
of (9). However, for many exponential Lévy models we either do not have a closed-
form expression for the density (e.g., the CGMY/KoBoL (named after Koponen,
Boyarchenko, and Levendorskii) model of [6, 8] and many regular affine models) or, if
we have, it involves one or more special functions (e.g., the VG model). In contrast,
the characteristic function of the log-spot price can typically be obtained in closed
form or, in the case of regular affine models, via the solution of a system of ordinary
(integro)differential equations (OIDEs).

We therefore take the Fourier transform of (12). The insight that the continuation
value can be seen as a convolution is useful here, as the Fourier transform of a convo-
lution is the product of the Fourier transforms of the two functions being convolved.
In the remainder we will employ the following definitions for the continuous Fourier
transform and its inverse:

ĥ(u) := F{h(t)}(u) =

∫ ∞

−∞
eiuth(t)dt,(13)

h(t) := F−1{ĥ(u)}(t) =
1

2π

∫ ∞

−∞
e−iutĥ(u)du.(14)

If we dampen the continuation value (12) by a factor exp (αx) and subsequently
take its Fourier transform, we obtain

erΔtF{c(tm, x)}(u) =

∫ ∞

−∞
eiuxeαx

∫ ∞

−∞
V (tm+1, x + z)f(z)dzdx

=

∫ ∞

−∞

∫ ∞

−∞
eiu(x+z)v(tm+1, x + z)e−iz(u−iα)f(z)dzdx,(15)

where in the first step we used the risk-neutral valuation formula from (12). We in-
troduced the convention that small letters indicate damped quantities, i.e., c(tm, x) =
eαxC(tm, x) and v(tm, x + z) = eα(x+z)V (tm, x + z). By changing the order of inte-
gration and remembering that x = y − z, we obtain

erΔtF{c(tm, x)}(u) =

∫ ∞

−∞

∫ ∞

−∞
eiuyv(tm+1, y)dy e−i(u−iα)zf(z)dz

=

∫ ∞

−∞
eiuyv(tm+1, y)dy

∫ ∞

−∞
e−i(u−iα)zf(z)dz

= F{eαyV (tm+1, y)}(u) φ(−(u− iα)).(16)

2The cross correlation of two functions f(t) and g(t), denoted f � g, is defined by
f � g ≡ f̄(−t) ∗ g(t) =

∫∞
−∞ f(τ)g(t + τ)dτ where “∗” denotes the convolution operator.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1684 R. LORD, F. FANG, F. BERVOETS, AND C. W. OOSTERLEE

In the last step we used the fact that the complex-valued Fourier transform of the
density is the extended characteristic function

(17) φ (x + yi) =

∫ ∞

−∞
ei(x+yi)zf(z)dz,

which is well-defined when φ(yi) < ∞, as |φ(x + yi)| ≤ |φ(yi)|. As such, (16) puts a
restriction on the damping coefficient α, because φ(αi) must be finite.

The difference with the Carr–Madan approach in (5) is that we take a trans-
form with respect to the log-spot price instead of the log-strike price, something
which [32, 37] also consider for European option prices. The damping factor is again
necessary when considering, e.g., a Bermudan put, as then V (tm+1, x) tends to a con-
stant when x → −∞ and as such is not L1-integrable. For the Bermudan put we must
choose α > 0. Though other values of α are allowed in principle, we need to know the
payoff transform itself in order to apply Cauchy’s residue theorem; see [32, 30, 37].
This restriction on α will disappear when we switch to a discretized version of (16) in
the next section. The Fourier transform of the damped continuation value can thus be
calculated as the product of two functions, one of which, the extended characteristic
function, is readily available in exponential Lévy models. We now recover the contin-
uation value by taking the inverse Fourier transform of the right-hand side of (16) and
calculate V (tm) as the maximum of the continuation and the exercise value at tm.
This procedure, as outlined in (7), is repeated recursively until we obtain the option
price at time t0. In pseudocode the CONV algorithm is presented in Algorithm 1.

Algorithm 1: The CONV algorithm for Bermudan options.

V (tM , x) = E(tM , x) for all x
E(t0, x) = 0 for all x
For m = M − 1 to 0

Dampen V (tm+1, x) with exp(αx) and take its Fourier transform
Calculate the right-hand side of (16)
Calculate C(tm, x) by applying Fourier inversion to (16) and undamping
V (tm, x) = max {(E(tm, x), C(tm, x)}

Next m

In Appendix A we demonstrate how the hedge parameters can be calculated in
the CONV method. As differentiation is exact in Fourier space, they will be more
stable than when calculated via finite-difference-based approximations.

The following section deals with the implementation of the CONV algorithm. In
particular we employ the FFT to approximate the continuous Fourier transforms that
are involved.

4. Implementation details of the CONV method. The essence of the
CONV method is the calculation of a convolution:3

(18) c(x) =
1

2π

∫ ∞

−∞
e−iuxv̂(u)φ (−(u− iα)) du,

where v̂(u) is the Fourier transform of v:

(19) v̂(u) =

∫ ∞

−∞
eiuyv(y)dy.

3For notational convenience we have dropped the discounting term out of the equation.
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In the remainder of this section we will focus on (18) and (19) for notational ease. To
be able to use the FFT means that we have to switch to logarithmic coordinates. For
this reason the state variables x and y will represent lnS(tm) and lnS(tm+1), respec-
tively, up to a constant shift. This section is organized as follows. Section 4.1 deals
with the discretization of the convolution in (18) and (19). Section 4.2 analyzes the
error made by one step of the CONV method and provides guidelines on choosing the
grids for u, x, and y. Section 4.3 considers the choice of grid further and investigates
how to deal with points of discontinuity. This will prove to be important if we want
to guarantee a smooth convergence of the algorithm. Finally, sections 4.4 and 4.5 deal
with the pricing of Bermudan and American options, respectively, with the CONV
method.

4.1. Discretizing the convolution. We approximate both integrals in (18)
and (19) by a discrete sum, so that the FFT algorithm can be employed for their
computation. This necessitates the use of uniform grids for u, x, and y:

(20) uj = u0 + jΔu, xj = x0 + jΔx, yj = y0 + jΔy,

where j = 0, . . . , N − 1. Though they may be centered around a different point, the
x- and y-grids have the same mesh size: Δx = Δy. Further, the Nyquist relation
must be satisfied, i.e.,

(21) Δu · Δy =
2π

N
.

In principle we could use the fractional FFT algorithm (FrFT) which does not require
the Nyquist relation to be satisfied. Numerical tests indicated, however, that this
advantage of the FrFT does not outweigh the speed of the FFT, so we use the FFT
throughout. Details about the exact location of x0 and y0 will be given in section 4.3.
Inserting (19) into (18) and approximating (19) with a general Newton–Cotes rule
and (18) with the left-rectangle rule yields:

(22) c(xp) ≈
ΔuΔy

2π

N−1∑
j=0

e−iujxpφ (−(uj − iα))

N−1∑
n=0

wne
iujynv(yn)

for p = 0, . . . , N − 1. When using the trapezoidal rule we choose the weights wn as:

(23) w0 =
1

2
, wN−1 =

1

2
, wn = 1 for n = 1, . . . , N − 2.

Though it may seem that the choice for the left-rectangle rule in (18) would cause
the leading error term in (22) to be O(du), the error analysis will show that the
Newton–Cotes rule one uses to approximate (19) is the determining factor. Inserting
the definitions of our grids into (22) yields:

c(xp) ≈
e−iu0(x0+pΔy)

2π
Δu

N−1∑
j=0

e−ijp2π/Neij(y0−x0)Δuφ (−(uj − iα)) v̂(uj),(24)

where the Fourier transform of v is approximated by:

(25) v̂(uj) ≈ eiu0y0Δy

N−1∑
n=0

eijn2π/Neinu0Δywnv(yn).
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Let us now define the DFT and its inverse of a sequence xp, p = 0, . . . , N − 1, as:

(26) Dj{xn} :=

N−1∑
n=0

eijn2π/Nxn, D−1
n {xj} =

1

N

N−1∑
j=0

e−ijn2π/Nxj .

Though the reason why will be described later, let us set u0 = −N/2Δu. As einu0Δy =
(−1)n, this finally leads us to write (24) and (25) as:

(27) c(xp) ≈ eiu0(y0−x0)(−1)pD−1
p {eij(y0−x0)Δuφ (−(uj − iα))Dj{(−1)nwnv(yn)}}.

4.2. Error analysis for Bermudan options. A first inspection of (27) sug-
gests that errors will arise from two4 sources:

- discretization of both integrals in (18) and (19);
- truncation of these integrals.

We will now consider both integrals in (18) and (19) separately and estimate both
discretization and truncation errors by applying the error analysis of [3]. [30] recently
combined an analysis similar to theirs with sharp upper bounds on European plain
vanilla option prices to find a sharp error bound for the discretized Carr–Madan
formula. Though it is possible to use parts of their analysis, we found that the
resulting error bounds overestimated the true error of the discretized CONV formula.
To be precise, the discretization of (18) does not contribute to the error of (27), which
is why we can use the left-rectangle rule to approximate (18). Based on a Fourier
series expansion of the damped continuation value c(x), we will show why this is the
case. This is natural, as the Fourier transform itself is generalized from Fourier series
of periodic functions by letting their period approach infinity. We start from the
risk-neutral valuation formula with damping and without discounting:

(28) c(x) =

∫ ∞

−∞
v(x + z)e−αzf(z)dz.

Suppose that the density f(z) is negligible outside [−A/2, A/2] and that we are in-
terested in c(x) only for values of x in [−B/2, B/2]. According to (28), we require
knowledge of v(x) for x in [−(A+B)/2, (A+B)/2]. Truncating the integration range
in (28) leads to

(29) c(x) ≈ c̃1(x) =

∫ A/2

−A/2

v(x + z)e−αzf(z)dz.

We can replace v by its Fourier series expansion on [−L/2, L/2], where we defined
L = A + B:

c̃1(x) =

∫ A/2

−A/2

∞∑
j=−∞

vje
−ij(x+z) 2π

L e−αzf(z)dz

=

∞∑
j=−∞

vje
−ij 2π

L x

∫ A/2

−A/2

e−(α+ij 2π
L )zf(z)dz,(30)

4If the spot price for which we want to calculate our option price does not lie on the grid, another
error source will be added as we will have to interpolate between option prices.
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and the Fourier series coefficients of v are given by:

(31) vj =
1

L

∫ L/2

−L/2

v(y)eij
2π
L ydy.

Second, we can replace the integral in (30) by the known characteristic function:

c̃1(x) ≈ c̃2(x) =

∞∑
j=−∞

vje
ij 2π

L xφ

(
−
(
j
2π

L
− iα

))
.

The sum of both truncation errors now equals:

e1(L) + e2(L) = c̃2(x) − c(x)

=

∫
R\[−A/2,A/2]

⎛⎝v(x + z) −
∞∑

j=−∞
vje

ij 2π
L (x+z)

⎞⎠ e−αzf(z)dz.(32)

Note that only the parameter L will appear in the final discretization. A general
guideline for choosing L is to ensure that the mass of the density outside [−L/2, L/2]
is negligible. The function c̃2 can, at least on this interval, be interpreted as an
approximate Fourier series expansion of c(x).

The third error arises by truncating the infinite summation from −N/2 to N/2−1,
leading to c̃3 and its associated error e3:

c̃3 =

N/2−1∑
j=−N/2

vje
−ij2πx/Lφ

(
−
(
j
2π

L
− iα

))
,

|e3(L,N)| = |c̃2(x) − c̃3(x)| ≤
∞∑

|j|=N/2

|vj |
∣∣∣∣φ(−(j 2π

L
− iα

))∣∣∣∣ .(33)

To further bound this error we require knowledge about the rate of decay of Fourier
coefficients. It is well known that, even if v is only piecewise C1 on [−L/2, L/2], its
Fourier series coefficients vj tend to zero as j → ±∞. The modulus of vj can therefore
be bounded as:

(34) |vj | ≤
η1(L)

|j|β1
.

By ηi(·) we denote a bounding constant, which depends only on the quantities specified
between the brackets. For functions that are piecewise continuous on [−L/2, L/2] but
whose L-periodic extension is discontinuous, we have β1 = 1. The following example
demonstrates that this is the case for a European put payoff.

Example 4.2.1 (European put). Suppose that we have a European put payoff
and that y = lnS(t) − lnK. Then the payoff function equals v(y) = eαyK(1 − ey)+,
and its Fourier series coefficients equal:

(35) vj = K

(
e−Lα/2(−1)j

e−L/2 − 1

L(α + 1) + 2πij
− L

e−Lα/2(−1)j − 1

(L(α + 1) + 2πij)(Lα + 2πij)

)
.

Clearly, β1 = 1 in (34), though when L → ∞ and j2π/L → u it can be shown that
the Fourier series coefficient converges to the Fourier transform of the payoff function,
which can be seen to be O(u−2) from (5).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1688 R. LORD, F. FANG, F. BERVOETS, AND C. W. OOSTERLEE

The characteristic function can be assumed to have power decay:

(36) |φ(x + yi)| ≤ η2(y)

|x|β2
.

This is overly conservative for, e.g., the Black–Scholes model, where the characteristic
function of the log-underlying φ(x + yi) decays as exp(−cx2), or the Heston model,
where the characteristic function has exponential decay. For the most popular Lévy
models, however, the power decay assumption is appropriate. The VG model, for
example, has β2 = 2τ/ν, with τ being the time step between two exercise dates.

Remark. It should be noted that the error analysis here is valid for Bermudan
options and not for American options in the limit τ → 0. In section 4.5 we will price
American options by Richardson extrapolation on the prices of Bermudan options with
a varying number of exercise opportunities. For problems where the time intervals
are very small and the characteristic function decays slowly, we may encounter some
numerical problems due to the oscillatoriness of the integrand. These problems are,
however, well-known and can in part be overcome by choosing a proper value of
parameter α.

Combining (34) and (36) yields:

|e3(L,N)| ≤
∞∑

|j|=N/2

η1(L)

|j|β1

η2(α)(
2π
L

)β2 |j|β2

≤ η3(α,L)

∫ ∞

N/2−1

x−β1−β2dx

= η3(α,L)
(N/2 − 1)1−β1−β2

β1 + β2 − 1
,(37)

where η3(α,L) = 2η1(L)η2(α)(2π/L)−β2 . We finally arrive at the discretized CONV
formula in (27) by approximating the Fourier series coefficients of v in (33) with a
Newton–Cotes rule:

(38) ṽ(uj) =
1

L
Δy

N−1∑
n=0

wne
iujynv(yn).

This is equal to the right-hand side of (24) multiplied by 1/L. It becomes clear that
we can set Δy = L/N and y0 = −L/2.

Inserting (38) in c̃3 results in the final approximation:

(39) c̃4(x) =

N/2−1∑
j=−N/2

ṽ(uj)e
−ij2π/Lxφ

(
−
(
j
2π

L
− iα

))
.

By assuming that the chosen Newton–Cotes rule is of O(N−β3), one can bound

(40) |vj − ṽ(uj)| ≤
η4(α,L)

Nβ3
,
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leading to the following error estimate for β2 �= 1:

|e4(L,N)| = |c̃3(x) − c̃4(x)| ≤ η4(α,L)

Nβ3

N/2−1∑
j=−N/2

∣∣∣∣φ(−(j 2π

L
− iα

))∣∣∣∣
≤ η4(α,L)

Nβ3

⎛⎝3φ(iα) + 2η2(α)

(
2π

L

)−β2 N/2∑
j=2

1

|j|β2

⎞⎠
=

η5(α,L)

Nβ3
+

η6(α,L)

(1 − β2)Nβ3

(
2β2−1

Nβ2−1 − 1

)
,(41)

with η5(α,L) = 3η4(α,L)φ(iα) and η6(α,L) = 2η2(α)η4(α,L)(2π/L)−β2 . For β2 = 1
the second error term should be η6(α,L) ln (N/2)/Nβ3 .

Summarizing, if we use a Newton–Cotes rule to discretize the Fourier transform
of the payoff function v, the error in the discretized CONV formula can be bounded
as:

|c(x) − c̃4(x)| ≤ e1(L) + e2(L,N) + e3(L,N) + e4(L,N)

= e1(L) + e2(L) + O(N−β3+min (1−β2,0)).(42)

As demonstrated, when we exercise into a European put or call, we will have β1 = 1.
The magnitude of β3 will depend on the interplay between the chosen Newton–Cotes
rule and the nature of the payoff function, something we investigate in the next section.
However, let us assume that β3 ≥ 2, which we may expect if we use the trapezoidal
rule or more sophisticated Newton–Cotes rules. This implies that, aside from the
truncation error, the order of convergence will be:

- O(N−β3) for characteristic functions decaying faster than a polynomial;
- O(Nmin (−β3−min (0,β2−1)) for characteristic functions having power decay.

For the Black–Scholes model this implies that the order of convergence will be fully
dictated by the chosen Newton–Cotes rule, whereas in the VG model where β2 = 2τ/ν
we can lose up to an order for sufficiently small time steps.

One final word should be mentioned on the damping coefficient α. In the contin-
uous version of the algorithm in section 3, α was chosen such that the damped con-
tinuation value was L1-integrable. The direct construction of the discretized CONV
formula in section 4.2 via a Fourier series expansion of the continuation value replaces
L1-integrability on (−∞,∞) with L1-summability on [−L/2, L/2], so that the restric-
tion on α is removed. In principle any value of α is allowed as long as φ(iα) is finite.
Nevertheless it makes sense to adhere to the guidelines stated before, as the function
will resemble its continuous counterpart more and more as L increases. The impact
of α on the accuracy of the CONV algorithm is investigated in section 5.1.

This concludes the error analysis of one step of the CONV algorithm. It is easy
to show that the error is not magnified further in the remaining time steps. The
leading error of our algorithm is therefore dictated by the time step where the order
of convergence in (42) is the smallest.

Remark. We explicitly mention that aliasing, a commonly observed feature when
dealing with a convolution of sampled signals by means of the FFT, is not a problem
in our application. We encounter a convolution of the characteristic function and the
DFT of a vector with option values. The DFT is periodical, but this would make the
convolution circular only if the characteristic function would also be obtained by a
DFT. We can, however, work with the analytical characteristic function, which is not
periodic.
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4.3. Dealing with discontinuities. Our focus in this section lies on achieving
smooth convergence for the CONV algorithm. As numerical experiments have shown
that it is difficult to achieve smooth convergence with higher-order Newton–Cotes
rules, we will from here on focus on the second-order trapezoidal rule in (23). Smooth
convergence is desirable as we will be using extrapolation techniques later on to price
American options in section 4.5.

The previous section analyzed the error in the discretized CONV formula when we
use a Newton–Cotes rule to integrate the function V , the maximum of the continuation
value, and the exercise value. If we focus on a simple Bermudan put, it is clear that
already at the last time step this function will have a discontinuous first derivative.
Certainly it is also possible that V itself is discontinuous; think of contracts with a
barrier clause. This will affect the order of convergence.

It is well known that, if we numerically integrate a function with (a finite number
of) discontinuities, we should split up the integration domain such that we are only
integrating continuous functions. Appendix B demonstrates this for the trapezoidal
rule. In particular, we show that the trapezoidal rule remains second-order if only the
first derivative of the integrand is discontinuous, at the cost of nonsmooth convergence.
If the integrand itself is discontinuous, the trapezoidal rule loses an order. Smooth
second-order convergence can be restored by placing the discontinuities on the grid.
This notion has often been utilized in lattice-based techniques, though the solutions
have more often than not been payoff-specific. An approach that is more or less
payoff-independent was recently proposed in [25], generalizing previous work in [26].
Unfortunately, we cannot use their methodology here, as our desire to use the FFT
binds us to a uniform grid.

Before investigating how to handle discontinuities in the CONV algorithm, we
collect the results from the previous sections and restate the grid choice for the basic
CONV algorithm. By equating the grids for x and y for now we have:

uj =
(
j − n

2

)
Δu, xj = yj =

(
j − 1

2

)
Δy, j = 0, . . . , N − 1.

Here x and y represent, up to a constant shift, lnS(tm) and lnS(tm+1), respectively.
If in particular x = lnS(tm) − lnS(0) and y = lnS(tm+1) − lnS(0), so that x and y
represent total log-returns, we will refer to this discretization as Discretization I. A
convenient property of this discretization is that the spot price always lies on the grid,
so that no costly interpolation is required to determine the desired option value. Note
that we need to ensure that the mass of the density of x and y outside [−L/2, L/2]
is negligible. Though more sophisticated approximations can be devised, we use a
rule of thumb from [40] which chooses L as a multiple of the standard deviation of
lnS(tm), i.e.,

(43) L = δ ·

√
− ∂2φ(tm, u)

∂u2

∣∣∣∣
u=0

+

(
∂φ(tm, u)

∂u

∣∣∣∣
u=0

)2

,

where φ(tm, u) is the characteristic function of lnS(tm) conditional upon lnS(0) and
δ is a proportionality constant. Note that there is a trade-off in the choice of L: As
we set Δy = L/N , the Nyquist relation implies Δu = 2π/L and hence [u0, uN−1] =
[−Nπ/L, (N − 2)π/L]. While larger values of L imply smaller truncation errors, they
also cause the range of the grid in the Fourier domain to be smaller, so that the error
in turn will be larger initially.
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A choice of grid that allows us to place one discontinuity on the grid is described
here. Suppose that at time tm the discontinuity we would like to place on the grid is
dm. We then shift our grid by a small amount to get

(44) xj = εx +

(
j − L

2

)
Δy, yj = εy +

(
j − L

2

)
Δy,

where εx = dm−	dm/Δx
·Δx and εy is chosen in a similar fashion. This discretization
will be referred to as Discretization II. Even for plain vanilla European options where
only one time step is required, this is useful. By choosing εy = lnK/S(0) and εx = 0
we ensure that the discontinuity of the call or put payoff lies on the y-grid, and the spot
price lies on the x-grid. When more discontinuities are present it seems impossible
to guarantee smooth convergence while keeping the restriction of a uniform grid. In
order to still be able to use the computational speed of the FFT, we will then have to
resort to, e.g., the discontinuous FFT algorithm of [16] or a recent transform inversion
technique in [27]. These directions are left for further research. Discretization II is,
however, well-suited for the pricing of Bermudan and American options, as we will
show in the following sections.

4.4. Pricing Bermudan options. It is well known that, in the case of Amer-
ican options, under Black–Scholes dynamics the derivative of the value function is
continuous (smooth fit principle). This is, however, not the case anymore when pric-
ing Bermudan options, for which the function V in (7) will have a discontinuous first
derivative. Though at the final exercise time tM the location of this discontinuity is
known, this is not the case at previous exercise times. All we know after approximat-
ing V is that the discontinuity is contained in an interval of width Δx, say, [x�, x�+1].

If we proceed with the CONV algorithm without placing the discontinuity on the
grid, the algorithm will show a nonsmooth convergence. In the QUAD method [2]
this is overcome by equating the exercise payoff and the continuation value and solv-
ing numerically for the location of the discontinuity. In our framework this can be
quite costly, so that we propose an effective alternative. We can use a simple linear
interpolation to locate the discontinuity, say, dm:

(45) dm ≈ x�+1(C(tm, x�) − E(tm, x�)) − x�(C(tm, x�+1) − E(tm, x�+1))

(C(tm, x�) − E(tm, x�)) − (C(tm, x�+1) − E(tm, x�+1))
.

We assume that the error made in determining dm in (45) is negligible compared to
the other error terms appearing (see also the discussion in Appendix B).

As in Discretization II we can now shift the grid such that dm lies on it and
recalculate both the continuation and the exercise value. In particular, note that the
inner DFT of (27) does not have to be recalculated; the only term that is affected is the
outer inverse DFT. Moreover, calculating dm automatically gives us an approximation
of the exercise boundary.

It is demonstrated in Appendix B that, if we choose the trapezoidal rule, a linear
interpolation is sufficient to guarantee a smooth convergence. Obviously, if higher-
order Newton–Cotes rules are used, higher-order interpolation schemes will have to
be employed to locate the discontinuity. The resulting algorithm we use to value
Bermudan call or put options with a fixed strike K is presented below in pseudocode.
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Algorithm 2: Details of the algorithm for valuing Bermudan

options.

Ensure that the strike K lies on the grid by setting εy = lnK/S(0)
For m = M − 1 to 1

Equate the x-grid at tm to the y-grid at tm+1

Compute C(tm, x) through (27)
Locate x� and x�+1 and approximate dm, e.g., via (45)
Set εx = dm and recompute C(tm, x)
Calculate V (tm, x) = max (E(tm, x), C(tm, x))
Set the y-grid at tm to be equal to the x-grid at tm

Next m
Set εx = 0 such that the initial spot price lies on the grid
Compute V (0, x) = C(0, x) using (27)

4.5. Pricing American options. Within the CONV algorithm there are ba-
sically two approaches to value an American option. One way is to approximate an
American option by a Bermudan option with many exercise opportunities, and the
other is to use Richardson extrapolation on a series of Bermudan options with an in-
creasing number of exercise opportunities. The method we use has been described in
detail by Chang, Chung, and Stapleton [10], though the approach in finance dates back
to Geske and Johnson [17]. The QUAD method in [2] also uses the same technique
to price American options. We restrict ourselves to the essentials here. Let V (Δt) be
the price of a Bermudan option with a maturity of T years where the exercise dates
are Δt years apart. It is assumed that V (Δt) can be expanded as

(46) V (Δt) = V (0) +
∞∑
i=1

ai(Δt)γi ,

with 0 < γi < γi+1. V (0) is the price of the American option. Classical extrapolation
procedures assume that the exponents γi are known, which means that we can use
n + 1 Bermudan prices with varying Δt in order to eliminate n of the leading order
terms in (46). The only paper we are aware of that considers an expansion of the
Bermudan option price in terms of Δt is Howison [24], who shows that γ1 = 1 for
the Black–Scholes model. Nevertheless, numerical tests indicate that the assumption
γi = i produces satisfactory results for the Lévy models we consider.

5. Numerical experiments. By various experiments we show the accuracy
and speed of the CONV method. The method’s flexibility is presented by showing
results for three asset price processes: GBM, VG, and CGMY. In addition, we value
a multiasset option to give an impression of the CPU times required to value a basket
option of moderate dimension. The pricing problems considered are of European,
Bermudan, and American style. We typically present the (positive or negative) error
V (0, S(0)) − Vref (0, S(0)), where the reference value Vref (0, S(0)) is obtained either
via another numerical scheme or via the CONV algorithm with 220 grid points. In
the tables to follow we will also present the error convergence defined as the absolute
value of the ratio between two consecutive errors. A factor of 4 then denotes second-
order convergence. All single-asset tests were performed in C++ on an Intel Xeon
CPU 5160, 3.00 GHz with 2 GB RAM. The multiasset calculations were programmed
in C on an Intel Core 2 CPU 6700, 2.66 GHz and 8 GB RAM. In Appendix C we
compare the speed and accuracy of our method to that of two PIDE methods, one
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for the VG model, a Lévy process with infinite activity, and a recent PIDE scheme
for Kou’s jump-diffusion model.

5.1. Characteristic function for Lévy price processes. The CONV method,
as outlined in section 3, is particularly well suited for exponential Lévy models whose
characteristic functions are available in closed form. We will briefly review some
defining properties of these models before discussing the extended CGMY/KoBoL
model (hereafter the extended CGMY model) of [6, 8] that will be used to analyze
the performance of the CONV method. For more background information we refer
you to [12] for the usage of Lévy processes in a financial context and to [39] for a
detailed analysis of Lévy processes in general.

In exponential Lévy models the asset price is modeled as an exponential function
of a Lévy process L(t):

(47) S(t) = S(0) exp(L(t)).

Though the CONV method can be adapted to cope with discrete dividend payments,
for ease of exposure we assume that the asset pays a continuous stream of dividends,
measured by the dividend rate q. In addition, we assume the existence of a bank
account B(t) which evolves according to dB(t) = rB(t)dt, r being the risk-free rate.
Recall that a process L(t) on (Ω,J , P ), with L(0) = 0, is a Lévy process if:

1. it has independent increments;
2. it has stationary increments;
3. it is stochastically continuous; i.e., for any t ≥ 0 and ε > 0 we have

(48) lim
s→t

P(|L(t) − L(s)| > ε) = 0.

The first property (cf. (11)) is exactly the property we required to recognize a cross
correlation in the risk-neutral valuation formula. Each Lévy process can be charac-
terized by a triplet (μ, σ, ν), with μ ∈ R, σ ≥ 0, and ν a measure satisfying ν(0) = 0
and

(49)

∫
R

min (1, |x|2)ν(dx) < ∞.

In terms of this triplet the characteristic function of the Lévy process equals:

φ(u) = E[exp (iuL(t))]

= exp (t)

(
iμu− 1

2
σ2u2 +

∫
R

(eiux − 1 − iux1[|x|<1])ν(dx)

)
,(50)

the celebrated Lévy–Khinchine formula. As is common in most models nowadays we
assume that (47) is formulated directly under the risk-neutral measure. To ensure
that the reinvested relative price eqtS(t)/B(t) is a martingale under the risk-neutral
measure, we require that

(51) φ(−i) = E[exp (L(t))] = e(r−q)t,

which is satisfied if we choose the drift μ as:

(52) μ = r − q − 1

2
σ2 −

∫
R

(ex − 1 − x1[|x|<1])ν(dx).
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The motivation behind using more general Lévy processes than the Brownian
motion with drift is the fact that the Black–Scholes model is not able to reproduce
the volatility skew or smile present in most financial markets. Over the past few years
it has been shown that several exponential Lévy models are, at least to some extent,
able to reproduce the skew or smile. Most of our examples will stem from the CGMY
model. Its underlying Lévy process is characterized by the triple (μ, σ, νCGMY ), where
the Lévy density is specified as:

(53) νCGMY (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C

exp
(
−G|x|

)
|x|1+Y if x < 0,

C
exp

(
−M |x|

)
|x|1+Y if x > 0.

The parameters satisfy C ≥ 0, G ≥ 0, M ≥ 0, and Y < 2. The condition Y < 2 is
induced by the requirement that Lévy densities integrate x2 in the neighborhood of 0.
Conveniently, the characteristic function of the log-asset price can be found in closed
form as:

(54)

φ(u) = exp

(
iuμt− 1

2
u2σ2t + tCΓ(−Y )[(M − iu)Y −MY + (G + iu)Y −GY ]

)
,

where Γ(x) is the gamma function. One can verify that the parameters G and M
represent, respectively, the smallest and the largest finite moment in the model, as
φ(−iu) = E[S(t)u] is infinite for u < −G and for u > M . The model encompasses
several models. When σ = 0 and Y = 0, we obtain the VG model, which is often
parameterized slightly differently with parameters5 σ, θ, and ν related to C, G, and
M , respectively, through:

(55) C =
1

ν
, G =

θ

σ2
+

√
θ2

σ4
+

2

νσ2
, M = − θ

σ2
+

√
θ2

σ4
+

2

νσ2
.

Finally, when C = 0 the model collapses to the Black–Scholes model.
To conclude this section, Table 1 contains five parameter sets which will be used in

various tests throughout this section. The only two parameters we have not specified
yet are δ from (43), which determines the range of the grid, and the damping coefficient

Table 1

Parameter sets in the numerical experiments.

T1-GBM: S(0) = 100, r = 0.1, q = 0, σ = 0.25;

T2-VG: S(0) = 100, r = 0.1, q = 0, σ = 0.12,
θ = −0.14, ν = 0.2;

T3-CGMY: S(0) = 1, r = 0.1, q = 0, σ = 0,
C = 1, G = 5, M = 5, Y = 0.5;

T4-CGMY: S(0) = 90, r = 0.06, q = 0, σ = 0
C = 0.42, G = 4.37, M = 191.2, Y = 1.0102;

T5-GBM: S(0) = 40, r = 0.06, q = 0.04, σi = 0.2,
ρij = 0.25.

5The parameters σ and ν should not be confused with the volatility and Lévy density of the Lévy
triplet.
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Fig. 1. Error of CONV method under T2-VG and K = 110 for a European and a Bermudan
put in dependence of parameter α.

α. For all GBM tests we set δ = 20; for the other Lévy models, which have fatter
tails, we use δ = 40.

Regarding the choice of α, Lord and Kahl [33] have demonstrated recently how
to approximate the optimal damping coefficient when the payoff transform is known,
which increases the numerical stability of the Carr–Madan formula. This is partic-
ularly effective for in/out-of-the-money options and options with short maturities.
Though their rationale can to some extent be carried over to the pricing of European
plain vanilla options (the difference being that now the payoff transform is also ap-
proximated numerically), the problem becomes much more opaque when dealing with
Bermudan options. To see this, note that the continuation value of the Bermudan
option at the penultimate exercise date equals that of a European option. At each
grid point, the European option will have a different degree of moneyness, calling for
a different value of α per grid point. Which single choice for α will be optimal is not
clear at all, a problem which becomes more complex as the number of exercise dates
increases. What is evident from Figure 1, where we present the error of the CONV
algorithm as a function of α for a European and a Bermudan put under T2-VG, is
that there is a relatively large range for which the error is stable. In all numerical
experiments we will set α = 0, which, at least for our examples, produces satisfactory
results.

5.2. European call under GBM and VG. First of all, we evaluate the CONV
method for pricing European options under VG. The parameters for the first test are
from T2-VG with T = 1. Figure 2 shows that Discretizations I and II generate results
of similar accuracy. What we notice from Figure 2 is that the only option with a
stable convergence in Discretization I is the at-the-money option with K = 100. It
is clear that placing the strike on the y-grid in Discretization II ensures a regular
second-order convergence. The results are obtained in comparable CPU time. From
the error analysis in section 4.2 it became clear that, for short maturities in the
VG model, the slow decay of the characteristic function (β2 = 2τ/ν) might impair
the second-order convergence. To demonstrate this, we choose a call option with a
maturity of 0.1 years, and K = 90. Table 2 presents the error of Discretization II for
this option in models T1-GBM and T2-VG. The convergence under GBM is clearly
of a regular second order. From the error analysis we expect the convergence under
VG to be of first order. The nonsmooth convergence observed in Table 2 is caused
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Fig. 2. Convergence of the two discretization methods for pricing European call options at
various K under T2-VG; left: Discretization I; right: Discretization II.

Table 2

CPU time, error, and convergence rate for European call options under T1-GBM and T2-VG,
K = 90, and T = 0.1 (using Discretization II).

(N = 2n) GBM: Vref (0, S(0)) = 11.1352431 VG: Vref (0, S(0)) = 10.9937032
n Time (msec) Error Conv. Time (msec) Error Conv.
7 0.095 −2.08e− 3 – 0.15 −2.91e− 4 –
8 0.20 5.22e− 4 4.0 0.29 −1.42e− 4 2.1
9 0.34 −1.30e− 4 4.0 0.55 −4.61e− 5 3.1
10 0.58 −3.26e− 5 4.0 1.04 −9.49e− 6 4.9
11 1.08 −8.15e− 6 4.0 2.04 −8.55e− 7 11.1
12 2.15 −2.04e− 6 4.0 4.19 7.97e− 7 1.1

by the highly oscillatory integrand. Note that all reference values are based on an
adaptive integration of the Carr–Madan formula; all CPU times, in milliseconds, are
determined after averaging the times of 1000 experiments.

In Appendix A the Greeks of the GBM call from Table 2 are computed.

5.3. Bermudan option under GBM and VG. Turning to Bermudan options,
we compare Discretizations I and II for 10-times exercisable Bermudan put options
under both T1-GBM and T2-VG. The reference values reported in Table 3 and 4 are
found by the CONV method with 220 grid points.

It is shown in Tables 3 and 4 that both Discretizations I and II give results of
similar accuracy. Discretization I uses somewhat less CPU time, but Discretization

Table 3

CPU time, error, and convergence rate pricing a 10-times exercisable Bermudan put under
T1-GBM; K = 110, T = 1, and Vref (0, S(0)) = 11.98745352.

(N = 2n) Discretization I Discretization II
n Time (msec) Error Conv. Time (msec) Error Conv.
7 0.13 9.09e− 3 - 0.23 −2.72e− 2 -
8 0.25 −1.29e− 3 7.0 0.46 −7.36e− 3 3.7
9 0.48 1.80e− 6 717.8 0.90 −2.00e− 3 3.7
10 1.09 2.71e− 5 0.1 2.00 −5.22e− 4 3.8
11 2.00 −9.31e− 6 2.9 3.85 −1.32e− 4 4.0
12 3.98 −1.31e− 5 0.7 7.84 −3.31e− 5 4.0
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Table 4

CPU time, error, and convergence rate pricing a 10-times exercisable Bermudan put under
T2-VG; K = 110 and T = 1 with reference value Vref (0, S(0)) = 9.040646119.

(N = 2n) Discretization I Discretization II
n Time (msec) Error Conv. Time (msec) Error Conv.
7 0.18 −8.45e− 2 - 0.28 −9.63e− 2 -
8 0.35 −9.02e− 3 9.4 0.55 −1.07e− 2 9.0
9 0.68 1.70e− 4 53.1 1.09 −2.27e− 3 4.7
10 1.33 2.04e− 4 0.8 2.15 −6.06e− 4 3.8
11 2.67 4.28e− 5 4.8 4.38 −1.59e− 4 3.8
12 5.64 1.11e− 5 3.8 9.29 −4.08e− 5 3.9

II shows a regular second-order convergence, enabling the use of extrapolation. The
computational speed of both discretizations is highly satisfactory.

5.4. American options under GBM, VG, and CGMY. Because Discretiza-
tion II yields a regular convergence, we choose it in this section to price American
options. We compare the accuracy and CPU time of the 2 approximation methods
mentioned in section 4.5, i.e., the direct approximation via a Bermudan option and the
repeated Richardson extrapolation technique. For the latter we opted for 2 extrap-
olations on 3 Bermudan options with 128, 64, and 32 exercise opportunities, which
gave robust results. In our first test we price an American put under T1-GBM. The
reference value was obtained by solving the Black–Scholes PDE on a very fine grid.
The performance of both approximation methods is summarized in Table 5, where
“P (N/2)” denotes that the American option is approximated by an N/2-times exer-
cisable Bermudan option. “Richardson” denotes the results obtained by the 2-times
repeated Richardson extrapolation scheme. It is evident that the extrapolation-based
method converges fastest and costs far less CPU time than the direct approximation
approach (e.g., to reach an accuracy of 10−4, the extrapolation method is approxi-
mately 50 times faster).

In Appendix A the Greeks of the American put from Table 5 are computed.
In the remaining tests we demonstrate the ability of the CONV method to price

American options accurately under alternative dynamics, by using the VG and both
CGMY test sets. All reported reference values were generated with the CONV method
on a mesh with 220 points and 2-times Richardson extrapolation on 512-, 256-, and
128-times exercisable Bermudans. We have included one CGMY test with Y < 1
and one with Y > 1, as the latter is considered a hard test case when numerically
solving the corresponding PIDE. Both CGMY tests stem from the PIDE literature,
where reference values for the same American puts were reported as 0.112171 for

Table 5

CPU time and errors for an American put under T1-GBM, with K = 110, T = 1, and
Vref (0, S(0)) = 12.169417.

(N = 2n) P (N/2) Richardson
n Time (msec) Error Conv. Time (msec) Error Conv.
7 0.97 −5.85e− 2 – 3.30 −3.06e− 2 –
8 3.71 −2.23e− 3 2.6 6.63 −7.75e− 3 3.9
9 14.80 −9.31e− 3 2.4 14.01 −2.06e− 3 3.8

10 59.98 −4.16e− 3 2.2 28.38 −5.19e− 4 4.0
11 251.66 −1.95e− 3 2.1 66.39 −1.22e− 4 4.3
12 1108.09 −9.39e− 4 2.1 151.85 −2.10e− 5 5.8
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Table 6

CPU time and errors for American puts under VG and CGMY.

T2-VG T3-CGMY T4-CGMY
K = 110, T = 1 K = 1, T = 1 K = 98, T = 0.25

(N = 2n) Vref (0, S(0)) = 10.0000 Vref (0, S(0) = 0.112152 Vref (0, S(0) = 9.225439
n Time (msec) Error Time (msec) Error Time (msec) Error
7 3.42 −4.53e− 2 3.82 4.58e− 5 3.83 3.38e− 2
8 6.85 4.26e− 2 7.60 9.52e− 5 7.68 6.63e− 3
9 14.29 1.34e− 2 15.87 −1.03e− 4 15.78 −1.94e− 3
10 28.99 −5.00e− 3 32.21 −1.58e− 5 33.37 −5.41e− 6
11 61.67 −1.88e− 2 68.16 −1.09e− 5 68.59 −1.72e− 4
12 135.09 1.31e− 3 148.16 −3.73e− 6 147.96 −7.94e− 5

T3-CGMY [4] and 9.2254842 for T4-CGMY [42]. The VG parameter set originally
stems from [34] and is used in examples in [28, 40, 35]. In [35] the American option
price is reported as 10. The reference values we use are calculated with the CONV
method (using 220 grid points and Richardson extrapolation on Bermudans with 512,
256, and 128 exercise opportunities) and agree up to four digits with the values from
the literature. Though the convergence in Table 6 is less stable than for Bermudan
options, the results in this section indicate that the CONV method is able to price
American options under a wide variety of Lévy processes. A reasonable accuracy can
be obtained quite quickly, so that it might be possible to calibrate a model to the
prices of American options.6

5.5. 4D basket options under GBM. The CONV method can easily be gen-
eralized to higher dimensions. The only assumption that the multidimensional model
is required to satisfy is the independent increments assumption in (11). We do not
state the multidimensional version of Algorithm 1 here as it is a trivial generaliza-
tion of the univariate case. Its ability to price options of a moderate dimension is
demonstrated by considering a 4-asset basket put option. Upon exercise at time ti,
the payoff is

(56) V (ti,S(ti)) = max

(
K − 1

4

4∑
p=1

Sp(ti), 0

)
.

The results of pricing a European and a 10-times exercisable Bermudan put under
T5-GBM are summarized in Table 7. The CPU times on the tensor-product grids
are very satisfactory, especially as the results on the coarse grids obtained in only a

Table 7

CPU time and prices for multiasset European and 10-times exercisable Bermudan basket put
options under T5-GBM, K = 40, and T = 1.

European 10-times exerc. Bermudan
N Result Time (sec) Result Time (sec)

164 1.6428 0.02 1.7721 0.15
324 1.6537 0.51 1.7390 3.12
644 1.6539 7.0 1.7394 61.6
1284 1.6538 159.2 1.7393 1511.7

6The majority of exchange-traded options in the equity markets are American.
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few seconds seem to have converged within practical tolerance levels. In order to be
able to price higher-dimensional problems, the multidimensional CONV method is
combined with sparse grids in [31].

6. Conclusions. In this paper we have presented a novel FFT-based method
for pricing options with early-exercise features, the CONV method. Like other FFT-
based methods, it is flexible with respect to the choice of asset price process and the
type of option contract, which has been demonstrated in numerical examples for Eu-
ropean, Bermudan, and American options. Path-dependent exotics can in principle
also be valued by a forward propagation in time, though this has not been demon-
strated here. The crucial assumption of the method is that the underlying assets
are driven by processes with independent increments, whose characteristic function
is readily available. Though we have mainly focused on univariate exponential Lévy
models, the techniques presented here certainly also extend to multivariate models,
as section 5.5 has shown. The main strengths of the method are its flexibility and
computational speed. By using the FFT to calculate convolutions we achieve a com-
plexity of O(MN log2 N), where N is the number of grid points and M is the number
of exercise opportunities of the option contract. In comparison, the QUAD method
of [2] is O(MN2). We have compared the CONV method to two PIDE schemes in
Appendix C. The conclusion of this experiment is that we expect the CONV method
to have an edge over PIDE schemes for the pricing of Bermudan options, in particu-
lar in exponential Lévy models with infinite activity. However, there will always be
special cases, such as the Black–Scholes model and Kou’s jump-diffusion model, for
which highly efficient P(I)DE schemes can be designed. The speed of the method may
make it possible to calibrate models to the prices of American options, as exchange-
traded options are mainly of the American type. Future research will focus on the
usage of more advanced quadrature rules, combined with speeding up the method for
high-dimensional problems.

Appendix A. The hedge parameters. Here we present the CONV formulas
for two important hedge parameters Δ and Γ, defined as

Δ =
∂V

∂S
=

1

S

∂V

∂x
, Γ =

∂2V

∂S2
=

1

S2

(
−∂V

∂x
+

∂2V

∂x2

)
.(57)

As it is relatively easy to derive the corresponding CONV formulas, we merely present
them here. For notational convenience we define:

F{eαxV (t0, x)} = e−rΔtA(u),(58)

where A(u) = F{eαyV (t1, y)} · φ(−u + iα), and we assume that t1 > 0. We now
obtain the CONV formula for Δ, as

Δ =
e−αxe−rΔt

S

[
F−1{−iuA(u)} − αF−1{A(u)}

]
,(59)

and for Γ:

Γ =
e−αxe−rΔt

S2

[
F−1{(−iu)2A(u)} − (1 + 2α)F−1{−iuA(u)}

+ α(α + 1)F−1{A(u)}
]
.(60)

Note that the only additional calculations occur at the final step of the CONV algo-
rithm, where we calculate the value of the option given the continuation and exercise
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Table 8

Accuracy of hedge parameters for a European call under T1-GBM; K = 90 and T = 0.1.

(N = 2n) European call
Δref = 0.933029 Γref = 0.01641389

d Δ error Conv. Γ error Conv.
7 −3.75e− 4 – 3.79e− 5 –
8 −9.37e− 5 4.0 9.43e− 6 4.0
9 −2.34e− 5 4.0 2.35e− 6 4.0
10 −5.86e− 6 4.0 5.88e− 7 4.0
11 −1.46e− 6 4.0 1.47e− 7 4.0
12 −3.66e− 7 4.0 3.68e− 8 4.0

Table 9

Values of hedge parameters for an American put under T1-GBM; K = 90 and T = 0.1.

(N = 2n) American put
d Δref = −0.62052 Γref = 0.0284400
7 −0.62170 0.028498
8 −0.62035 0.028687
9 −0.62050 0.028464
10 −0.62053 0.028463
11 −0.62054 0.028463
12 −0.62055 0.028463

values at time t1. Since differentiation is exact in Fourier space, the rate of conver-
gence of the Greeks will be the same as that of the value. To demonstrate this we
evaluate the delta and gamma under T1-GBM of the European call from Table 2
and the American put from Table 5. For both tests we choose Discretization II. Ta-
bles 8 and 9 present the results. The reference values for the European call option
are analytic solutions; for the American call these were found by numerically solving
the Black–Scholes PDE on a very fine grid. Note that the delta and gamma of the
American put converge to a slightly different value—this is due to our approximation
of the American option via 2 Richardson extrapolations on 128-, 64-, and 32-times ex-
ercisable Bermudans. If we would increase the number of exercise opportunities of the
Bermudan options, the delta and gamma would, at the cost of a longer computation
time, converge to their true values.

Appendix B. Error analysis of the trapezoidal rule. Suppose that we
are integrating f ∈ C∞ over an interval [a, b]. The discretization error induced by
approximating this integral with the trapezoidal rule follows from the Euler–Maclaurin
summation formula:

(61)

∫ b

a

f(x)dx− T (a, b, f,Δx) =

∞∑
j=1

(Δx)2j
B2j

(2j)!

(
f (2j−1)(b) − f (2j−1)(a)

)
,

where Bj is the jth Bernoulli number and T (a, b, f,Δx) is the trapezoidal sum:

(62) T (a, b, f,Δx) = Δx

⎧⎨⎩
N−2∑
j=1

f(xj) +
1

2
(f(a) + f(b))

⎫⎬⎭ ,

with Δx = (b− a)/(N − 1) and xj = a+ jΔx. From (61) it is clear that, if the value
of the first derivative is not the same in a and b, the trapezoidal rule is of order 1/N2.

The trapezoidal rule can obviously also be applied to functions that are piecewise
continuously differentiable. The convergence may, however, be less stable if we do
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not know the exact location of the discontinuities. To see this, suppose that f can be
written as:

(63) f(x) =

{
g(x), x ≤ z,
h(x), x > z.

Further, we define:

(64) � = max {j|xj ≤ z, j = 0, . . . , N − 1},

so that the interval [x�, x�+1] contains z. Placing the discontinuity on the grid would
result in the same order of convergence as the trapezoidal rule itself:∫ b

a

f(x)dx ≈ T (a, x�, g,Δx) + T (x�+1, b, h,Δx)

+
1

2
(z − x�)(g(x�) + g(z)) +

1

2
(x�+1 − z)(h(z) + h(x�+1)).(65)

A straightforward application of the trapezoidal rule would lead to T (a, b, f,Δx). The
difference with (65) is

1

2
Δxg(x�) +

1

2
Δxh(x�+1) −

1

2
(z − x�)(g(x�) + g(z)) − 1

2
(x�+1 − z)(h(z) + h(x�+1)).

Expanding both g and h around the point of discontinuity z yields:

1

2
(x�+1 + x� − 2z)(g(z) − h(z)) +

1

2
(x�+1 − z)(z − x�)(g

(1)(z) − h(1)(z))

+
1

2
(x�+1 − z)

∞∑
j=1

1

j!
g(j)(z) +

1

2
(z − x�)

jh(j)(z).

If f is continuous, but the first derivatives of g and h do not match at z, the order
of convergence is still 1/N2 since (x�+1 − z)(z − x�) ≤ (Δx)2. It is clear that, as
N changes, the ratio of (x�+1 − z)(z − x�) to (Δx)2 may vary strongly, leading to
nonsmooth convergence. If f is discontinuous, i.e., if the values of g and h in z
disagree, the order of convergence is O(1/N).

Now suppose that we have computed g and h at grid points xj , j = 0, . . . , N − 1.
We know that g(z) = h(z), though we do not know the exact location of z. All we
know is that it is contained in [x�, x�+1]. This is a situation we encounter in the
pricing of Bermudan options, as outlined in section 4.4. If we proceed to integrate f
on this grid, we will not obtain smooth convergence. A simple approximation of the
discontinuity can, however, be found by assuming a linear relationship between x and
g(x) − h(x). This leads to

(66) z ≈ x�+1(g(x� − h(x�)) − x�(g(x�+1) − h(x�+1))

(g(x�) − h(x�)) − (g(x�+1) − h(x�+1))
+ O

(
Δx2

)
,

where the error estimate follows from linear interpolation. Now suppose that we shift
our grid (and recalculate g and h) such that either x� or x�+1 coincides with this
approximation of z and redo the numerical integration. It is easy to see that smooth
convergence will be restored, as the contribution of the error term in (66) to the error
term in (65) will be of O

(
Δx3

)
. Note that, if we use higher-order Newton–Cotes

rules, a higher-order interpolation step will be required.
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Appendix C. Comparison of CONV with PIDE methods. In this section
we will compare the speed and accuracy of the CONV method to two PIDE schemes,
one for the VG model [5] and one recent scheme for Kou’s model [41]. An advantage
of the CONV method over various PIDE schemes is that it is flexible with respect
to the choice of model, whereas the integral term in PIDEs typically requires a very
careful treatment, for example, due to its weakly singular kernel for infinite activity
Lévy models. Furthermore PIDE methods require a relatively fine discretization in
the time direction to guarantee an accurate representation of the solution, whereas
in the CONV method we require only as many time steps as exercise dates. For
Bermudan options with few exercise dates this is advantageous, though for American
options it works to our disadvantage.

At the end of the day, however, the only fair comparison is to compare two
implementations in the same computer language, on the same CPU, in terms of speed
and accuracy. First we compare the PIDE scheme from [5] to our method. Parameters
for the problem solved in this section are given by T6-VG in Table 10. Code for the
PIDE scheme from [5] was available in Matlab. As we wrote the CONV code in
both Matlab and C++, we were able to conduct a fair comparison. We found the
CONV code, for large values of N , to be roughly three times as fast as the Matlab
code, so we scaled CPU times in Figure 3 accordingly. For a Bermudan option with
relatively few exercise dates, the CONV method is a clear winner. The advantage is
reduced when pricing American options, as we price these by extrapolating the values
of Bermudan options with a relatively large number of exercise dates. Nevertheless,
in case of the VG model the CONV method still reaches a higher accuracy given the
same computational budget as the PIDE scheme of [5].

Table 10

Parameter sets in the numerical experiments.

T6-VG: S(0) = 1, r = 0.1, q = 0, σ = 0.282842,
θ = 0, ν = 1.

T7-Kou: S(0) = 100, r = 0.05, q = 0, σ = 0.15,
λ = 0.1, p = 0.3445, η− = 3.0775, η+ = 3.0465.
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Fig. 3. Comparison of the performance for a VG computation of the CONV method with a
PIDE solver [5] for Bermudan and American options.
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Fig. 4. Comparison of performance for jump-diffusion computation (Kou’s model) of the CONV
method with a PIDE solver [41] for Bermudan and American options.

One other model we consider when comparing the speed and accuracy of the
CONV method to PIDE schemes is the Kou model [29]. Its characteristic function
equals:

(67) φ(u) = exp

(
iuμt− 1

2
u2σ2t + iutλ

(
p

η+ − iu
− 1 − p

η− + iu

))
.

In Kou’s jump-diffusion model, jumps arrive via a Poisson process with intensity λ.
The logarithm of each jump follows a double-exponential density. Toivanen’s [41]
recent schemes for Kou’s model utilize the log-double-exponential form of the jump
density to derive efficient recursion formulas for evaluating the integral term in the
PIDE. The benefits are clear: The complexity is reduced to O(MN), and in addition
his schemes are no longer bound to uniform grids. Therefore it is to be expected that
this method outperforms ours, which is not tailored to any specific model. Code for
the penalty method from [41] was available in C++. We use parameter set T7-Kou in
Table 10. In both examples in Figure 4, the PIDE scheme reaches a higher accuracy
than the CONV method for small computational budgets. This is partially due to
the fact that for this example we required a very wide grid for the CONV method
(δ = 100) in order to converge to the right solution, which implies a lower accuracy for
small values of N . For the Bermudan option the CONV method is still competitive,
yet for the American option the PIDE scheme is the clear favorite. Though the CONV
method appears to converge faster than the penalty method, the PIDE scheme would
be the method of choice for practical levels of accuracy.

Although we have compared only to two methods, we believe it is fair to say that
the CONV method will compare favorably to most PIDE schemes for the pricing of
Bermudan options under Lévy models. There will, however, always be special cases,
such as Kou’s jump-diffusion model, for which one can design highly efficient PIDE
schemes that are faster and more accurate than the CONV method.
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